Every additional μg/m3 of lead in air increased assault rates 21 years later (163 per 100K) — accounting for 29.8 % of the variance in assault rates 21 years later (compared to 5% for proportion of youth or finishing high school)

For every additional μg/m3 of lead in air, assault rates 21 years later increased by 163 per 100,000 population (see Table 3). Lead in air was the strongest predictor in the model, accounting for 29.8 % of the variance in assault rates 21 years later. By comparison, the proportion of the population aged 15–24 accounted for 5.4 % of the variance, and the proportion of the population who completed secondary school accounted for 5.0 %. Median income was not a significant predictor in the model. The proportion of people aged 15–24 had the reverse effect on assault rates to that anticipated (i.e., each additional percentage of the population aged 15–24 was related to a decrease in assaults). This is most likely related to the restricted variance in these variables when expressed as a proportion, and the overlap between the three socio-demographic variables.
Environ Health. 2016; 15: 23. Published online 2016 Feb 16. doi:  10.1186/s12940-016-0122-3 PMCID: PMC4756504

The relationship between atmospheric lead emissions and aggressive crime: an ecological study

Background

Many populations have been exposed to environmental lead from paint, petrol, and mining and smelting operations. Lead is toxic to humans and there is emerging evidence linking childhood exposure with later life antisocial behaviors, including delinquency and crime. This study tested the hypothesis that childhood lead exposure in select Australian populations is related to subsequent aggressive criminal behaviors.

Methods

We conducted regression analyses at suburb, state and national levels using multiple analytic methods and data sources. At the suburb-level, we examined assault rates as a function of air lead concentrations 15–24 years earlier, reflecting the ubiquitous age-related peak in criminal activity. Mixed model analyses were conducted with and without socio-demographic covariates. The incidence of fraud was compared for discriminant validity. State and national analyses were conducted for convergent validity, utilizing deaths by assault as a function of petrol lead emissions.

Results

Suburb-level mixed model analyses showed air lead concentrations accounted for 29.8 % of the variance in assault rates 21 years later, after adjusting for socio-demographic covariates. State level analyses produced comparable results. Lead petrol emissions in the two most populous states accounted for 34.6 and 32.6 % of the variance in death by assault rates 18 years later.

Conclusions

The strong positive relationship between childhood lead exposure and subsequent rates of aggressive crime has important implications for public health globally. Measures need to be taken to ameliorate exposure to lead and other environmental contaminants with known neurodevelopmental consequences.

More detail

Environmental lead exposure is toxic to humans. Still, given the difficulty of proving that lead exposure causes harmful effects, and the cost of interventions, it has been difficult to implement primary prevention strategies to achieve lower levels of exposure. This is despite overwhelming evidence that there is no threshold or apparent safe level of lead exposure in its negative impact on intelligence, academic achievement and other neuro-cognitive and health outcomes [15]. The annual costs of childhood lead exposure are estimated to be up to $50 billion in the USA and €22.7 billion for France [6, 7]. However, the benefit of intervention to mitigate lead exposure is well established. It has been estimated that for each dollar spent to reduce lead exposure in housing, the benefit to society is $17 to $220 [8].

Australia is one the world’s largest producers and exporters of lead [9]. However, the majority of research on the neurocognitive and behavioral effects of lead exposure has been conducted in the USA and elsewhere. Despite emerging evidence from the USA that links early life lead exposure with antisocial behaviors, including conduct disorder, delinquency and crime [1012], there is no published research on the effects of lead exposure on delinquency or criminality across subsets of Australian populations. In a multi-national study, Nevin [11] used estimates of Australia’s national blood lead trend to correlate to adulthood national criminal behaviours, identifying a strong association between preschool blood lead levels and subsequent crime rate trends. The prevailing approach to understanding causes of adult crime focuses heavily on factors such as parenting style, socioeconomic status, and peer groups [13]. The paucity of research examining the links between lead exposure and criminality is surprising given the strong evidence that childhood lead exposure is linked to a variety of socio-behavioral problems that are precursors for criminal behavior [12,1417].

Historically, lead exposure in Australia has been dominated by three sources: (i) lead paint, (ii) leaded petrol and (iii) mining and smelting emissions, all of which pose a potential risk to human health. Blood lead levels in the Australian population have fallen since the final removal of lead from petrol in 2002 [18, 19] together with the reduction of allowable lead in paint to 0.1 % in 1997. However, the legacy of leaded petrol emissions and the renovation of premises that once used lead paint continue to pose potential environmental hazards, particularly in the older parts of Australian cities [20]. Kristensen [18] calculated that emissions from seven decades of leaded petrol use (1932–2002) exceeded 240,000 tonnes, dwarfing lead mining and smelting sources [21]; there is a strong relationship between these emissions and contemporaneous childhood blood lead levels (r = 0.970, p < 0.00001) [18]. Mining and smelting operations have also been a major source of lead emissions in Australia [22, 23]. Examples of historical exposure include Port Kembla and Boolaroo in the state of New South Wales (NSW), which are considered in this study; while examples of ongoing exposure include Broken Hill (NSW), Mount Isa (Queensland) and Port Pirie (South Australia) for which relevant data were not available. At Port Kembla and Boolaroo, children’s mean blood lead levels were elevated during smelting operations – more than three times the current Australian intervention level of 5 μg/dL [24, 25].

This study addresses the research gap by examining the relationship between lead exposure of select Australian populations (including children, who are the most vulnerable section of the population to lead toxicity) and subsequent criminality during adolescence and early adulthood. We test the hypothesis that there is a significant correlation between shifts in lead exposure and rates of aggressive crime in later life, and we do this at suburb, state and national levels using multiple methods.

The researchers describe how they operationalized the hypothesis as follows:

For the suburb-level analysis, we examine rates of assault (an impulsive and aggressive crime) over time as a function of air lead concentrations 15–24 years earlier in NSW suburbs where sufficient data are available. As a test for discriminant validity, we also examine the relationship between air lead concentrations and fraud rates in the same suburbs; fraud being a non-impulsive and non-aggressive crime. We supplement our analysis by examining the relationship between lead exposure and later aggressive crime at different geographic scales by investigating state and national data over time. Due to restrictions on data availability, we utilize total lead emissions from the combustion of leaded petrol as a proxy for lead exposure, and deaths by assault as a proxy for aggressive crime.  We conducted suburban analyses of air lead concentrations and criminal behaviors in NSW. Suburbs were included if air lead data were available for at least 30 years. The six suburbs were: Boolaroo, Earlwood, Lane Cove, Port Kembla, Rozelle and Rydalmere.

At the suburb level, the zero-order correlations between lead in air and assault rates peaked at a 21-year lag for most sites. The correlations at the 21-year lag were strong and significant for all sites (range r = .506 to r = .802, all p values ≤ .022) except one.

Lead in air concentrations in metropolitan suburbs also exceeded 0.5 μg/m3 until some years after the introduction of unleaded petrol in 1985 [18].

Fig. 1

Lead in air concentrations and assault rates for six suburbs, 1973–1999

Fig. 2

Scatterplot showing the relationships between lead in air concentrations and assault rates 21 years later for all six suburbs

Direct effects between air lead and assault rates across all suburbs were examined using linear mixed-effects models for time lags between 15 and 24 years. The relationship peaked in the middle of the age-crime curve, with the strongest direct effect for lead in air as a predictor of assault rates at the 21-year lag (see Table 2). In this mixed model, every additional μg/m3 of lead in air was associated with an increase of 196 assaults per 100,000 population, and lead in air accounted for 38.4 % of the variance in assault rates.

Major socio-demographic correlates of crime were subsequently added as covariates in the 21-year lag mixed model. Primary analyses included socio-demographic covariates for the years in which the assaults were committed. As suggested by Bellinger [14] we also examined models that controlled for socio-demographic variables at the time of lead exposure, but these variables did not reach significance in either model and consequently were excluded from the analyses to avoid multicollinearity between the two sets of socio-demographic variables.

Accounting for socio-demographic covariates, lead in air remained a strong predictor of assault rates.

For every additional μg/m3 of lead in air, assault rates 21 years later increased by 163 per 100,000 population (see Table 3). Lead in air was the strongest predictor in the model, accounting for 29.8 % of the variance in assault rates 21 years later. By comparison, the proportion of the population aged 15–24 accounted for 5.4 % of the variance, and the proportion of the population who completed secondary school accounted for 5.0 %. Median income was not a significant predictor in the model. The proportion of people aged 15–24 had the reverse effect on assault rates to that anticipated (i.e., each additional percentage of the population aged 15–24 was related to a decrease in assaults). This is most likely related to the restricted variance in these variables when expressed as a proportion, and the overlap between the three socio-demographic variables.

Table 3

Parameter estimates in the full mixed model (n = 98). Dependent variable: assault rates per 100,000 population

As a test for discriminant validity, mixed models that examined the relationship between lead in air and fraud rates were also examined for the 15–24 age-crime curve. There were some small statistically significant relationships, but the largest effect of lead as a predictor of fraud rates (lagged 15 years) accounted for only 5.5 % of the variance. It is apparent that the explanatory power of lead in air is minimal in relation to fraud rates, which contrasts markedly with assault rates.

Authors: eherrnstadt@fas.harvard.edu and emuehlegger@ucdavis.edu

Other papers and studies:

Margolis, A. et. al.  Exposure to common air pollutants during pregnancy may predispose children to problems regulating their thoughts, emotions, and behaviors later on, according to a new study led by researchers at the Columbia Center for Children’s Environmental Health within Columbia University’s Mailman School of Public Health and New York State Psychiatric Institute. The new study is the first of its kind to examine the effects of early life exposure to a common air pollutant known as PAH (polycyclic aromatic hydrocarbons) on self-regulating behaviors and social competency that incorporates multiple assessment points across childhood. Children with poor self-regulation skills have difficulty managing disruptive thoughts, emotions, and impulses; poor social competency limits their ability to get along with others. The study appears in the Journal of Child Psychology and Psychiatry.  PAH are ubiquitous in the environment from emissions from motor vehicles; oil,…and other combustion sources…

The evidence that to PAH leads to long-term effects on self-regulatory capacities during early and middle childhood suggests that PAH exposure may be an important underlying and contributing factor to the genesis of a range of childhood mental health problems. In terms of a potential mechanism, researchers suggest that prenatal exposure to PAH damages neural circuits that direct motor, attentional, and emotional responses. Further deficits in self-regulation may predispose children to becoming engaged in high-risk adolescent behaviors.  “This study indicates that prenatal to air pollution impacts development of self-regulation and as such may underlie the development of many childhood psychopathologies that derive from deficits in self-regulation, such as ADHD, OCD, substance use disorders,” said Margolis.

Reyes, J. found large negative consequences of early childhood lead exposure, in the form of an unfolding series of adverse behavioral outcomes: behavior problems as a child, pregnancy and aggression as a teen, and criminal behavior as a young adult. At the levels of lead that were the norm in United States until the late 1980s, estimated elasticities of these behaviors with respect to lead range between 0.2 and 1.0.